

National Centre for Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

Listen to the ocean

Biogeochemical data assimilation

Stefano Ciavatta

s.ciavatta@pml.ac.uk

Data assimilation training session

GODAE OceanViev 6-10 May 2019 Halifax, Canada

Model (chl)

01 Mar 06

Ocean colour (chl)

Courtesy of Momme Butenschön

Improved estimation and understanding taking account of model and data errors

PML Bymouth Marine Motivation

Simulation of biogeochemical indicators and fluxes is vital for marine protection, marine policy implementation, climates studies

Ciavatta et al., JGR, 2016

Plymouth Marine Assimilation of ocean colour in ERSEM

• 100 members

PML

Model states

- Log-transformation of states and variables
- Localized analysis (spatially variable radius)
- Evolution of error covariance matrix

Chlorophyll (day: 5 August 2006)

PML Plymouth Marine DA of satellite chlorophyll in ERSEM

PML Depresentation PML Depresentation DA of satellite chlorophyll in ERSEM

Skill in biogeochemical hindcasting at L4

Total particulate carbon (TPC) 700 600 500 400 ي س² 300 ي 200 100 04-Feb 19-Aug 02-Sep 16-Sep 30-Sep 07-Jan 21-Jan 04-Mar 18-Mar 01-Apr 15-Apr 29-Apr 29-Apr 13-May 27-May 10-Jun 24-Jun 08-Jul 22-Jul 05-Aug 14-Oct 28-Oct 11-Nov 25-Nov 9-Dec 23-Dec

RMSE=144 mgC/m3 Other 8 time series RMSE = -7.7% RMSE=133 mgC/m3

Skill in biogeochemical hindcasting at L4

Data assimilation lead to a generalized enhancements of the model skills, according to 5 univariate skill metrics

(RMSE, correlation, model efficiency, percentage bias, cost function χ^2)

Key: ERSEM skill & plasticity

Ciavatta et al., 2001

DA of satellite chlorophyll in ERSEM

Ciavatta et al., 2001

PML Plymouth Marine Laboratory

time

<u>Objective</u>: To explore the advantages of assimilating optical properties (from satellite) in shelf sea models

Ciavatta et al., 2014

The coupled optical-ecosystem model

 $Kd(\lambda)$: spectral light attenuation coefficient

PML Plymouth Marine DA of satellite optical properties in ERSEM

Assimilation of Kd(blue) & hindcast of Kd(blue)

Assimilation of Kd(blue) & hindcast of chlorophyll !!!

RMSE vs satellite chlorophyll

RMSE of chlorophyll improved ! (correlations not that much)

PML Plymouth Marine DA of satellite optical properties in ERSEM

Other 16 variables...

PML Plymouth Marine DA of satellite optical properties in ERSEM

Difference bias: assimilation of Kd(blue)

RMSE: Percentage differences

"Spread" of DA corrections

Correction

Herbivorous food-chain (large cells)

PML

Plymouth Marine Laboratory

New time series of:

- 4 size-classes phyto chlorophyll
- daily concentrations
- Spanning 1998-2015
- At a resolution of 4 km

Novelties:

- 4 vs 3 components
- Per-pixel errors
- Temperature dependency

Brewin et al., Frontiers in Marine Science, in revision

PML Plymouth Marine PFT into a pre-operational model: reanalysis

The "1-month forecasts" vs satellite PFT chlorophyll

Diatoms

Dinoflagel

Nano-phytopl.

Pico-phytopl.

Tot chl

Ciavatta et al., JGR, 2018

Ciavatta et al., JGR, 2018

PML Pythonath Marine PFT into a pre-operational model: reanalysis

Skill versus in situ data of biogeochem indicators

PML Plymouth Marine PFT into a pre-operational model: reanalysis

Impact on simulation of pCO2 and C fluxes

Ciavatta et al., JGR, 2018

PML Pyrrouth Marine PFT into a pre-operational model: reanalysis

Impact on simulation of Nitrate and N fluxes

Ciavatta et al., 2018

PML Discussion: why PFT outperformed chl DA?

PFT chlorophyll vs total chlorophyll (log10)

The state-of-the-art parameterization introduced (realistic) **non-linearity** that weakened EnKF hypothesis.

PML Pymouth Marine DA into an operational model: prediction

The ecosystem model: NEMO-FABM-ERSEM

NEMOVar

3D-VAR

First-Guess—At-Appropriate-Time Log-transformation Incremental Analysis Update Conservation of PFT ChI:N ratios

Skakala et al, JGR, 2018

PML Plymouth Marine Laboratory

DA into an operational model: prediction

DA into an operational model: prediction

PML

NCEO PFT DA expected to be NRT operational in late 2020

National Centre for Earth Observation

- Assimilation of ocean colour can improve the simulation of biogeochemical variables that are not observable from space
- Errors of model and ocean-colour observations are critical
- * "New" ocean-colour products can outperform the assimilation of chlorophyll (e.g. K_d, PFTs, r_{rs}), but have some drawbacks
- Combined assimilation of ocean-colour products and in situ biogeochemical data (e.g. biogeochemical-Argos)