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Data Assimilation

best
combines model and
observations and brings

synergy

* Oceanography

* Climate Prediction

* Climate Assessment

* Hydrology

* Geology

* Climatology

* Detection & Attribution

* ...and many more beyond geosciences ...
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Posing the problem: sequential inference

Posing the problem: sequential inference

» Inference is the process of taking a decision based on limited information.

» Limitations arise by incomplete and noisy data and by an approximate knowledge about the
laws (if any) governing the system evolution.

» The problem we intend to solve is the estimation of the state of a system, at any arbitrary past,
present and/or future times.

» Sequential inference is the problem of updating our knowledge about the system each time new
data becomes available.
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Posing the problem

An example: Palomares (Spain) incident

@ On January 17“’, 1966, a US Air Force bomber flying
over the south of Spain, with four hydrogen bombs,
exploded in midair.

@ Three bombs were recovered, undetonated, on land,
while the fourth was lost.

@ According to a local fisherman, it splashed down
somewhere in the Mediterranean Sea.

Alvin's search updated prior updated prior

@ How would you go about looking for the bomb in a way
From Berkeley science review at that maximizes the chance you will find it?
http://berkeleysciencereview.com /article/toolbox/

» This lecture treats the case of the discrete-model/discrete-observation estimation problem
(relevant in many practical cases such as climate science, biology among others).

» Complete treatments of the continuous-continuous and discrete-continuous cases can be found
in many textbooks on estimation theory (e.g., Jazwinski, 1970; Bain and Crisan, 2009).
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Our ingredients The model: deterministic or stochastic?

The model: what we know about the system physical-dynamical laws

We will assume that a model of the natural process of interest is available as a discrete
stochastic-dynamical system,

X = Mpgp—1(Xp—1, A) + 0. (1)
> x; € R™ and A € R? are the model state and parameter vectors respectively.
» The model parameters may include the external forcings or the boundary conditions.
> Mp.r—1: R™ — R™ is usually a nonlinear, possibly chaotic, function from time t;_1 to tg.

» 1 € R™ is the model error, represented as a stochastic additive term.

Remark: my, could be included into the parentheses without loss of generality.

Remark: The stochastic difference model, Eq. (1), has a continuous-time counterpart (At — 0); it is
known as the Ité stochastic differential equation (see, e.g. Jazwinski, 1970; Reich and Cotter, 2015)
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Our ingredients The model: deterministic or stochastic?

The model: why stochastic?

» Imperfect model - My.,_1 embeds our knowledge about the laws governing the process =
Such a knowledge is always (in realistic cases) partial and/or incorrect.

» Numerical discretization - M., is often a spatio-temporal discretization of physical laws
(e.g., the Navier Stokes equations for fluids) expressed as partial differential equations on a
continuous media = The finite resolution induces errors.

» Chaos - Many natural systems are chaotic and exhibit extreme sensitivity to initial conditions
= Any (inevitable) error in the system state contaminates the prediction.

The sources of error are accounted for using a stochastic model
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Our ingredients The observations

The observations and their relation with the quantities of interest

» Noisy observations, y; € R%, are related to the model state vector through
Vi = Hi(Xx) + €. (2)

with H : R™ — R? the, generally nonlinear, observation operator mapping from model to
observational space.

» Observational error, €, is a stochastic term, accounting for the instrumental error, deficiencies
in the formulation of H and the representativity error.

» The latter arises from the presence of unresolved scales and represents their effect on the
resolved scales - it is ubiquitous in physical science even when observations and model have the
same resolution (why?).

Remark: often d < m, i.e., the amount of available data is insufficient to fully describe the system.
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Our ingredients The observations

The observations and their relation with the quantities of interest

» The stochastic model dynamics, Eq. (1), together with the stochastic observation model, Eq. (2)
define an Hidden Markov model (HMM)

Direct & @ e X ‘- @
problem
Markov model | | l
l H l e Observations
! Inverse
Y1 Y2 A problem

» A stochastic model is said Markov if its future state depends only on the current state and not
on any states the models has attained before.

» We focus here on the inverse problem < Estimate x by observing y.
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Bayesian formulation of the inference

Bayesian inference for the inverse problem

» With the two complementary pieces of information in hand, model and data, we can move
forward and formalize their fusion.

» When making inference we have to decide how much we trust the uncertain information. = We
need to quantify the uncertainty.

» Given the stochastic nature of the problem
uncertainty quantification is done using probabilities.

» The Bayesian approach offers a natural mathematical framework to understand and formalize
this problem.

» In particular, the goal of Bayesian inference is to estimate the uncertainty in x given y <
Compute the conditional probability density function (PDF) p(x|y).
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Bayesian formulation of the inference

Bayes’ theorem

Let x and y be jointly distributed random vectors with joint PDF, p(x,y). Then

p(y¥)p(x) 3)

p(xly) = )

» An algebraic equation for conditional probabilities < The probability that the event, x, occurs,
knowing that another one, y, has occurred.

» The output of the estimation process is the posterior distribution p(x|y)

» p(x) is the prior PDF that gathers all the knowledge before assimilating the new observations.
It is a distinctive feature of the Bayesian approach.
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Bayesian formulation of the inference

Bayes’ theorem

> p(y|x) is the likelihood of the data o7
conditioned on the state x (i.e., it quantifies ok - Eirll(::ihoo "
the likelihood of observing y given a particular | ——— Posterior

value of x).

» p(y) is the marginal distribution of the data,
p(y) = [dxp(y|x)p(x). It integrate to one and
is treated as a normalization coefficient.

Remark: The factor p(y) is relevant, for instance,
in model selection problems and is also referred to
as model evidence.
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Figure: Courtesy of Geir Evensen
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Sequential Bayesian estimate

Sequential Bayesian estimate

» Recall our HMM given by the dynamical model, Eq. (1), data model, Eq. (2)
X = Mpgp—1(Xp—1) + Mk Vi = Hi(xx) + €

» The model and the observational errors, {ni,e; : k =1,..., K} are assumed to be uncorrelated
in time, mutually independent, and distributed according to the PDFs p,, and p.

» Let us define the sequences of system states and observations within the interval [to, tx] as
XK:0 = {XK, XK1, X0} and Yx.1 = {yK,YK—1,---, Y1} respectively.

We wish to estimate the posterior p(xk.o|yx.1) for any arbitrary, sequentially increasing, ty.

Using Bayes’s law we have
p(Xr0lyr:1) X p(yK:1|XK.0)P(XK:0) (4)
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Sequential Bayesian estimate Prediction, filtering and smoothing

Prediction, filtering and smoothing

Depending on which time period is needed for
state estimation, it is possible to define three
estimation problems:

@ Prediction: estimate p(x;|yx:1) with [ > k.
© Filtering: estimate p(xx|yk:1).

© Smoothing: estimate p(xx.0|yx:1).
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Sequential Bayesian estimate Prediction, filtering and smoothing

Formal Bayesian solutions - Prediction

» Given the conditional PDF p(xy|yk.0), we seek a law to propagate it forward in time under the
effect of the model dynamics, Eq. (1).

This leads to the Chapman-Kolmogorov equation for the propagation of a PDF under the
model dynamics, Eq. (1), as

plalyin) = [ dxep(appbalye). 6
where the initial PDF at ¢j is given by p(xg|ys.1), and p(x;|xx) = pplx; — Myk(xg)] in our HMM
model.

» The Prediction problem is addressed by solving the Chapman-Kolmogorov equation (5), given
the conditional PDF at time ¢, p(Xk|yx:1)-

Remark: In case of model dynamics given as a stochastic differential equation, instead of a stochastic
difference equation as in Eq. (1), the Chapman-Kolmogorov equation becomes the Fokker-Planck equation.
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Sequential Bayesian estimate Prediction, filtering and smoothing

Formal Bayesian solutions - Filtering

» Filtering problem is the most common in applications, and is characterized by sequential
processing, in which measurements are utilized as they become available.

» An analysis step, in which the conditional PDF p(xy|yx.1) is updated using the latest
observation, yy,

P(Xk|yr:1) < pelyr — Hi(xp)]p(Xk|yr-1:1), (6)

» alternates with a forecast step which propagates this PDF, using Chapman-Kolmogorov
equation, forward until the time of a new observation,

p(Xk+1lyk:1) = / dxy, pp X1 — Mpy1x(Xe)|P(Xk|Yk:1)s (7)
]Rm
to get p(Xk+1|yr:1)-
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Sequential Bayesian estimate Prediction, filtering and smoothing

Formal Bayesian solutions - Smoothing

» Smoothing is relevant when, for instance, one is interested in a retrospective analysis after the
observations have been collected.

» The goal is to estimate the conditional PDF, p(xx|yx:1) of the state at any time t;, 0 < k < K,
based on all observations (past, present and future).

» First write the smoothing PDF at time t; by marginalizing over xj41
p(Xkly K1) =/ dxp+1 p(Xk[Xk+1, Y 1) P(Xk41|Y K1) (8)
R"L

Note that, using Bayes’ rule, the integrand in Eq. (8) can be written as
P(Xk[Xk+1, Y1) = P(Xk[Xb41, Yii1) o< P(Xio11%0)P(Xk [Y1i1), (9)

given that the observations {yx41,...,Yx | are independent of x; when X1 is known.

» Finally remark that p(xx|yx.1) in Eq. (9) is the filter solution at time #.
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Sequential Bayesian estimate Prediction, filtering and smoothing

Formal Bayesian solutions - Smoothing

» This implies that the smoothing PDFs can be obtained using a

forward-backward recursive algorithm.

» Forward phase - Start from p(x¢) then from k =1to k = K
o Estimate and store the filter PDFs, p(xy|yk:1)-
» Backward phase - From k=K —1to k=1

o Compute p(xk|Xk+1,¥k1) with Eq. (9) using the stored filter PDFs, p(x|yx.1) and
P(Xk41]Xk)-

@ Obtain the smoothing PDFs, p(xx|y k1), from Eq. (8) making use of the smoothing PDF at
time t11, p(Xk+1|yk:1) estimated at the previous iteration.
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Sequential Bayesian estimate Prediction, filtering and smoothing

Comments on Bayesian filter and smoother

» The filter solution ¢ (0 < k < K) is obtained by sequential updating until ¢; = it thus
accounts for all observations until .

» In contrast, the smoothing solution also accounts for future observations until £ = it is thus
generally more accurate than the filtering one.

» At the final time ¢y both solutions have incorporated the same amount of data = in the
absence of approximations, they will coincide.

» In general the filtering and smoothing do not possess analytical solutions.

» However, when the dynamical and observational model are linear and all error PDFs are
Gaussian an analytic solutions exists: the famous Kalman filter and Kalman smoother.
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A route to solution: the Gaussian approximation

The Gaussian and linear approximation

» The huge dimension of models and datasets hampers the use of a fully Bayesian approach in
geosciences (curse of dimensionality).

» It is usually assumed that observation and model error are Gaussian distributed = PDFs can
be described completely in terms of their mean and covariance.

» The Gaussian approximation is at the core of most of the DA procedures successfully used in
the geosciences.

Let assume that the dynamical and observational models are both linear

Xk = Mk:kflxkfl + Nk, Nk ~ N(O7 Qk)a (10)
vi = Hixp + €, er ~ N(0,Ry), (11)

with Mg.,_1 and Hy being matrices in R™*" and Réxm respectively.

» The observational and model noises are assumed to be white-in-time, unbiased, and Gaussian
distributed with covariances Rj € R?*? and Q; € R™*™ respectively.
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A route to solution: the Gaussian approximation The Kalman filter and smoother

The Kalman filter

The KF recursive equations reads

Forecast Step x§ = My.p_1X4_1, (12)
Pl = M..1P3_ ML, | + Qs (13)

Analysis step K, = PiH] (H,PiH} + Ry, (14)
xp = x;, + Ki(ye — Hixy), (15)

8= (I — Ky Hy)PL. (16)

» Given Qg, Ry, Hy and My, for k£ > 1, and initial condition for the mean, x§ = xo, and error
covariance, P§ = Py, Egs. (12)—(16) estimate sequentially the state and the associated error
covariance at any future time k > 1.

» The matrix K;, € R™*? is the Kalman gain and contains the coefficients of the linear
combination between the forecast xi, and the observations.

» The resulting state estimate, the analysis x7, has minimum variance and is unbiased.

Carrassi, Bocquet, Bertino Short Course on Data Assimilation - OceanPredict19, May 2019 21 / 25



A route to solution: the Gaussian approximation The Kalman filter and smoother

The Kalman smoother

» A recursive estimate of the PDFs p(xx|yx.1), can be obtained using a forward and backward
recursions, in which a forward-in-time filter is followed by a backward-in-time smoother.

» Assume that a forward in time KF has been implemented and the forecast and analysis means

. f f
and covariances, xk/ * and Pk/ *. have been computed and stored.

» We can then run the KS recursion backward in time, for k = K — 1,...,1, to compute the

smoothing mean and covariance, x;" and P3", according to

Sk = PzMg+1:k(Mk+1:szME+1:k + Qk+1)71 = PiMEH;kP’f (17)

k+1>
sm __ _a sm f
KS Mean xp" = Xp + Sp(X — Xpg1) (18)
: sm __ pa sm f T
KS Covariance ~ Py™ = P} + Si (P}, — Py, 1)S; (19)
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A route to solution: the Gaussian approximation The Kalman filter and smoother

Some properties of the Kalman filter and smoother

» Time dependent prior - The KF/KS recursions provide a time-dependent estimate of the
prior that is highly desirable in chaotic systems, so that PfC is itself strongly time-dependent.

» Filter divergence - It happens when the solution of the KF deviates dramatically from the
true signal. When H, P! HI << Ry, the filter solution may start to ignore the observations

» A diagnostic tool - The innovation vector sequence, vy =y, — Hkxi, is Gaussian and
white-in-time: one can thus keep monitoring the innovations to asses the KF optimality and,
possibly, to implement corrections.

» Not a learning algorithm - Large innovations do not increase the uncertainties.

» Dependency on the initial condition - The dependence on the initial error covariance, Py,
is more critical for some models than others.
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A route to solution: the Gaussian approximation The Kalman filter and smoother

Which method for what?

» The extended Kalman filter (EKF) is a first-order expansion of the KF to nonlinear

dynamics.

» The EKF has been successful for models showing no dynamical instabilities (soil models), but
diverges for a Quasi-Geostrophic model (Evensen, 1992).

» Both 4DVAR and the Ensemble Kalman Filter are better suited for chaotic dynamics.
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Carrassi, Bocquet, Bertino Short Course on Data Assimilation - OceanPredict19, May 2019



Essential bibliography

@ Asch, M., M. Bocquet, and M. Nodet, Data Assimilation: Methods, Algorithms, and
Applications, Fundamentals of Algorithms, SIAM, Philadelphia, 2016. (Chapter 3).

@ Carrassi, A., M. Bocquet, L. Bertino and G. Evensen. Data assimilation in the geosciences -
An overview on methods, issues and perspectives. WIREs Climate Change, 9:e535, 2018.

@ Jazwinski, A.H., Stochastic Processes and Filtering Theory, Academic Press, New York,
1970. (Chapters 2 and 3).

@ Reich, S., and C. Cotter, Probabilistic Forecasting and Bayesian Data Assimilation,
Cambridge University Press, Cambridge, 2015. (Chapters 2, 4 and 5).

o Wikle and Berliner, A Bayesian tutorial for data assimilation. Physica D, 203, 1-16, 2007.

Carrassi, Bocquet, Bertino Short Course on Data Assimilation - OceanPredict19, May 2019 25 / 25



	Posing the problem: sequential inference
	Our ingredients
	The model: deterministic or stochastic?
	The observations

	Bayesian formulation of the inference
	Sequential Bayesian estimate
	Prediction, filtering and smoothing

	A route to solution: the Gaussian approximation
	The Kalman filter and smoother

	Essential bibliography Part I

