
A regression model is a “truth model” as much as it is an “error 
model”, but our need to accommodate (for the first time) 
unshared truth and cross-correlated errors is not matched by 
an existing framework for doing so.  Moreover, it is surprising 
that only four extra samples surrounding each collocation 
seem to provide a tractable errors-in-variables solution.

More flexibility may be needed in the physical interpretation of 
cross-correlation (or covariance) between two datasets.  
Although covariance is often taken to be a linear measure of 
association, it can be shown that an accommodation of 
correlated equation error yields an updated covariance 
between, say, in situ (I) and model (N) estimates:

Here, β is regression slope, σt
2 is shared true variance, σI

2 is 
error variance (say, in I) and λN is the fraction (between zero 
and one) of this error variance that is shared (hence, by N). 
Regardless of the sign of β, we note that λNσI

2 is a 
positive error cross-covariance.  Although the traditional 
covariance of ordinary linear regression is defined by βσt

2 
alone, a more sophisticated interpretation includes λNσI

2, 
which allows for a genuine correlation between two datasets 
that otherwise might be expected to have none.

The new model employs a sampling strategy that surrounds 
the collocation of two datasets, say in space or in time (T0):

For this model, called INFERS, the bracketing forecast and 
revcast samples constitute a timeseries that is ordered as 
EFNRS.  (Note that by any definition of a forecast, the revcast 
is its functional inverse.)  We employ persistence forecasts 
and revcasts, where samples are taken at equal time lags on 
opposite sides of a collocation.  Additive (α) and 
multiplicative (β) bias terms allow for a linear calibration 
of one dataset with respect to the other, and in the case of 
FERS, this calibration is also predictive.

A fundamental justification for including shared error, following 
Mahalanobis (1947), Fuller (2006), and Janssen et al. (2007), 
is that individually, I and N are each expressed as linearly 
related to shared truth (t). Hence, although the equations for I 
and N are also an expression of the standard 
errors-in-variables regression model, they include an 
additional error term (λNεI is implicit in I, and thus is shared), 
which we identify as cross-correlated equation error.

A method-of-moments solution of INFERS has been proposed 
(Danielson et al., 2018) in which all equations for variance and 
for covariance that involve I or N are exact (i.e., equations for 
the covariance between FERS are solved as closely as 
possible.  A simultaneous, weakly constrained minimization of 
differences between the LHS and RHS of six autocovariance 
equations (i.e., the covariances involving the forecast and 
revcast samples FERS) is sought.  The proposed solution is 
tractable by identifying the two free parameters - shared true 
variance σt

2, and multiplicative calibration or regression slope, 
βN - that are required to obtain a unique solution of the model.

Figure 2: Demonstration of a weakly constrained, general solution of 
INFERS.  This involves full parameter searches between zero and twice 
the variance of I for shared true variance (abscissa) and between OLS and 
RLS solutions for regression slope (ordinate). The open square denotes a 
prefered solution by a maximum (d) in the average position of 
autocovariance minima (a-c,e-g). The open circle denotes a final solution 
(i.e., closest to the open square, but constrained to the lighter shading).

Figure 2 is a typical example of localized paths (one for each 
equation) along which autocovariance differences are small.  
These pathways converge to a similar point at the top of each 
panel (the reverse linear regression solution). The unshaded 
region is where shared error fraction (λN) is between zero and 
one and all error variances are nonnegative.  These 
constraints often exclude the reverse linear regression 
solution, although our selected solution (open circle) is not far 
away. This solution is chosen by identifying pathways in slices 
of fixed σt

2 or βN. At the average location of all pathways in a 
slice, the number of contributing pathways is recorded.  All 
slices are summed to obtain a locus of minima (Fig. 1d), 
from which a unique solution is selected (i.e., as a global 
maximum, possibly after smoothing if there are multiple local 
maxima).

Ordinary Linear Regression
- An historical comment

and a way forward -

Way Forward Ocean Applications

From Wikipedia (2019): “Six blind elephants were discussing 
what men were like. After arguing they decided to find one and 
determine what it was like by direct experience. The first blind 
elephant felt the man and declared, 'Men are flat.' After the 
other blind elephants felt the man, they agreed.  Moral:  We 
have to remember that what we observe is not nature in 
itself, but nature exposed to our method of questioning.”

Figure 1:The parable of six blind men is over 2500 years old; the 
“inverse” parable of six blind elephants is 60 years old (Wikipedia 
2019).  Both parables refer to partial truth but how does this relate to 
linear regression?

A model for ordinary linear regression, and measurement 
models in general, are easier to formulate by assuming that a 
reference exists for absolute, genuine, or wholistic truth.  
However, this may come at an interpretive cost.  In ordinary 
linear regression, each datum is expressed as the sum of 
just two components: a deterministic term that is linearly 
related to the shared explanatory variable (called truth) and 
an independent, random term (called error).  Contrary to 
parables above, a single truth is wholly shared and separate 
errors are wholly unshared.  What is the cost of neglecting 
notions of a) unshared or partial truth and b) dependent or 
cross-correlated error?  More generally, what about shared and 
unshared components of both truth and error?

Regarding shared error, can we assume that our data are 
linearly related to truth?  Janssen et al. (2007) note that “if there 
is actually a nonlinear relation between measurement and the 
truth but the linear calibration model ... would be taken instead, 
the error will have a random and a systematic component.  
Furthermore, if two types of measurements have a similar 
nonlinear relation with the truth,then in the context of the linear 
model ... there is now the possibility of correlated errors.”  By 
questioning whether two datasets are each linearly related to 
truth, we are not just motivating the introduction of a term called 
equation error (Carroll & Ruppert 1996, Fuller 2006).  By 
fundamentally questioning the linear assumption, we 
motivate a more elaborate measurement model in which 
each datum is expressed as the sum of three components: 
the more familiar shared truth and random error 
components, plus a third component that involves 
equation error.  Emphasis on shared error (nonlinear sharing), 
as well as shared truth (linear sharing), can be made explicit.

Might we be playing the blind elephant?  Pearson (1902) 
was sensitive to error dependence but was challenged by 
unexpected correlations that were described as either spurious 
or genuine, with the identification of genuine correlation (taken 
as the result of physical or environmental similarities) being 
most challenging.  Mahalanobis (1923) continued to experiment 
with cross-correlation based on estimated errors in tropospheric 
sounding measurements.  Subsequently, Mahalanobis (1940, 
1947) performed general experiments with measurements 
made using nonlinear reference scales.  Following Pearson 
(1902), the hypothesis was entertained that subtle similarities 
among particular groups of measurements may have been 
present (and perhaps could be avoided). However, 
Mahalanobis (1947) also acknowledged that this placed an 
emphasis on (as yet unidentified) physical or 
environmental similarities among groups of observers, 
rather than on the question of how measurements are first 
made and then later interpreted using a model.

The growing emphasis on equation error seems to have begun 
after the 1940s.  Mahalanobis (1947) highlights early 
experiments using steel rulers constructed with unequal 
measurement intervals (Mahalanobis, 1940). Nonlinear 
measurements using Kater pendulums at the National Bureau 
of Standards were proposed at the Allied Mathematics 
Colloquium Series lecture in November 1946, but it seems 
unlikely that Mahalanobis (1947) was successful in motivating 
them. Although Kruskal (1988) cites extensive research on 
repeated measurements into the 1980s, his description of the 
nonlinear reference scale suggests that such experiments are 
rarely considered.  A more elaborate measurement model 
might make it easier to connect theory and experiments.

Predictive Sampling

An ongoing challenge in most scientific domains is to 
characterize (dis)agreement between two methods of 
measurement.  Predictive sampling may provide a new 
opportunity to resolve bias and performance when multiple 
samples are available near each collocation (cf. Bland and 
Altman 2007).  The prospect of measurement model solutions 
that use these samples as “instruments” (Su et al., 2014, 
Danielson et al. 2018) can encourage a growing familiarity 
with shared truth and shared error as updated measures of 
linear and nonlinear agreement, respectively.  Selected ocean 
applications are highlighted below.

Apart from ecosystem proxy variables that are regularly 
observed from space, in situ surveys are usually conducted a 
few times a year and historically target selected species.  No 
attempt to compare observations and a growing list of 
numerical ecosystem models by predictive sampling (say, 
using five consecutive months) has yet been made.  Although 
existing allometric theory is an attractive basis for many model 
components (Arhonditsis et al. 2019), an accommodation of 
nonlinear associations (covariance) would be timely.

Regional climate simulations depict a trend in relative humidity 
associated with decreased ice coverage in the Arctic in 
coming decades.  Ship traffic is expected to increase but 
support services in case of accidents is a known problem.  
Associated with an increase in relative humidity is a decrease 
in visibility, but the variance in fog and visibility that can be 
explained by relative humidity is poorly known.

Danielson et al. (2019a,b) compare visibility observations from 
ships in the International Comprehensive Ocean-Atmosphere 
Data Set (ICOADS) to proxies taken from the European 
Centre for Medium-Range Weather Forecasting Reanalysis 
(ERA) Interim dataset.  Presumably, shared error may 
include spurious correlation (Pearson 1902) as well as 
nonlinearity in the ICOADS-ERA visibility measures.  
Shared truth alone is employed as the metric of agreement.  
ERA visibility proxies include three tuned parameterizations 
(GM, RUC, FSL), relative humidity (RHU), SST, specific 
humidity (SHU) and dew point temperature (DPT).

The ICOADS-ERA collocations are divided so that each ERA 
proxy can be trained to yield ICOADS visibility.  Training 
succeeds in showing that shared-error-nonlinearity can 
be reduced, as expected, but not to zero.  Shared error is 
thus interpreted as a combination of equation error and 
spurious correlation.  The unshared category has a complex 
interpretation as measurement error as well as unshared 
components of equation error and truth(!)

A full solution of the INFERS model (Fig. 2) was only 
implemented in 2018.  Hence, its application to surface current 
data can be compared to a partial solution given by Danielson 
et al. (2018).  Unsurprisingly, their assumption of matching 
variance (and total error) does not carry into the full solution: 
GlobCurrent (nowcast) SNR is better, drifter (in situ) error is 
larger, and shared error is smaller.  However, the full solution 
seems as robust as the earlier approximate solution.

Figure 3: INFERS model parameters as in Fig. 10 of Danielson et al. 
(2018), but retrieved using the experimental full model solution (cf. 
Fig. 2).  Shown are the drifter (in situ/red) and GlobCurrent (nowcast/blue) 
collocations of a) zonal and b) meridional additive calibration α (ms−1) and 
c) multiplicative calibration β and d) shared error fraction λ for both zonal 
and meridional components, and e,j) 15-m current, f,k) shared truth, g,l) 
total error, and h,m) unshared error standard deviation (ms-1), and i,n) 
signal to noise ratio (dB) for the zonal and meridional components, 
respectively.
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By comparison, ordinary linear regression is not necessarily 
as flexible.  Instead of focusing on as yet unidentified physical 
or environmental similarities, if we question whether data are 
nonlinearly related to truth, then it follows that our freedom to 
interpret correlation and covariance should be slightly greater 
than in the framework of ordinary linear regression. 

For models with many unknowns, it is common practice to use 
proxy data (so-called instruments) to supplement the 
information from the collocated samples (I and N).  We 
propose to use a few nearly collocated samples at say, 
T0±6h, T0±12h and call these persistence forecasts (FE) 
and revcasts (RS) of the nowcast (N).  Although NFERS is 
then a short timeseries whose autocorrelated errors can be 
modelled using a standard first-order autoregressive (AR-1) 
formula, note that error propagation starts with the centered 
observational error (εI) and, by analogy with the impact of an 
assimilated observation, assumes a symmetric propagation 
through the gridded data:

where we assume that truth and error are additive and the 
signal in two datasets can be linearly related. There is growing 
evidence that for datasets that do not conform exactly to such 
assumptions, an associated equation error term needs to be 
considered (Fuller, 1987, Carroll and Ruppert, 1996, Kipnis et 
al., 1999). We identify Fuller’s (1987) equation error with the 
shared (cross-correlated) error parameterization λNεI.

Ordinary and reverse linear regression solutions are analytic 
but the same approach to the INFERS model (i.e., by the 
method of moments) yields 21 covariance equations and 17 
unknowns.  No less than five samples (NFERS) is required to 
obtain more covariance equations than unknowns.  Although 
the INFERS model solution is numerical, all parameters 
except for true variance (σt

2) and nowcast multiplicative bias, 
(βN), can be determined analytically (strong constraint).  The 
solution is simplified by defining multiplicative bias by variance 
matching (this is both a familiar and instructive assumption):

Six so-called autocovariance equations then remain to define 
true variance σt

2 under a weak constraint:

In other words, these autocovariance equations cannot all be 
satisfied at the same time, which is a reminder that 
(measurement) modelling always involves approximations.

Analytic solutions (e.g., by the method of moments) is 
generally only possible for ordinary and reverse linear 
regression.  Again in geophysics, however, there is the 
opportunity to propose numerical solutions to experimental 
measurement models that sample large observational 
datasets as well as high resolution analysis and forecast 
datasets that are orders of magnitude larger still.  
Measurement models like the one above that distinguish 
between correlated and uncorrelated error are also applied in 
studies of the human condition, but such studies involve 
comparatively few people.  These days, the opportunity to 
solve measurement models by an experimental sampling of 
geophysical data is usually far cheaper and easier.

Ecosystem models

An ongoing challenge in most scientific domains is to 
characterize differences between two methods of 
measurement.  Predictive sampling may provide a new 
opportunity to resolve bias and performance when multiple 
samples are available near each collocation (cf. Bland and 
Altman 2007).  The prospect of new measurement model 
solutions using these samples as instruments (Su et al., 2014, 
Danielson et al. 2018) encourages more ocean applications 
and a growing familiarity with shared truth and shared error as 
updated measures of linear and nonlinear agreement, 
respectively.

This study also highlights, following Bentamy et al. (2017), that 
shared truth is invariant under linear recalibration (a property 
of many measurement models that may not be well known, 
perhaps in part because true variance itself is often 
undocumented).  This visibility study is careful to avoid the 
ambiguity in use of the term “agreement”, which medical 
researchers typically equate with bias (e.g., Bland and Altman 
2007), rather than with shared true variance.

Apart from ecosystem components that are regularly observed 
from space, in situ surveys are usually conducted a few times 
a year and historically target selected species.  No attempt to 
compare observations and a growing list of numerical 
ecosystem models by predictive sampling (say, using five 
consecutive months) has been made.  Although existing 
allometric theory is widely used in such models, an 
accommodation of nonlinear associations (covariance) would 
be timely (Arhonditsis et al. 2019).

There is a need to develop the interpretation of variance 
budgets for measurement models, just like the physical 
interpretation of any geophysical budget (e.g., for temperature 
or energy).  The INFERS model is directly comparable to 
ordinary (and reverse) linear regression.  So far, its properties 
seem to include small true variance and a first order correlated 
error variance.  The implication of small true variance is that 
standard methods seem to misrepresent (correlated) error as 
truth.  The implication of a nonzero error correlation is that two 
datasets can be both physically independent and statistically 
dependent.  The connection between small true variance and 
measurement model approximations that cannot be avoided, 
as well as the distinction between physical and statistical 
independence require more attention.

• Standard deviation of shared truth t (a,b,e,f) and individual 
error εI and εN (c,d,g,h) for sets of collocated in situ (red) and 
analysis (blue) ocean surface current estimates (Danielson et 
al. 2018).  Each day of the year (top) and current speed 
category (bottom) involves 5000 and 500 collocations, 
respectively.  Included are the corresponding ordinary (OLR; 
dashed black) and reverse (RLR; dashed grey) linear 
regression reference solutions.  INFERS truth (red) lies 
outside the OLR-RLR range (black/grey), which bound most 
known linear regression solutions.  Moreover, separate OLR 
and RLR bounding errors are both recovered by the INFERS 
model.

 Bentamy et al. (2017) employ the INFERS model for 
competitive validation (see Supporting Definitions to the left) 
and observe that in situ and analysis total error is equal, 
whereas shared truth is invariant, following a recalibration of 
each gridded analysis to the same in situ reference (Table 2 
above). Because INFERS provides some freedom in the 
choice of calibration, it follows that total error is in some sense 
arbitrary. On the other hand, because shared truth is invariant 
under any linear calibration, Bentamy et al. are able to rank 
analyses by their measure of agreement with the reference in 
situ dataset. This invariance of truth under calibration is a 
property of many measurement models and may not be well 
known, perhaps in part because true variance itself is often 
undocumented.

• Regional climate simulations depict a trend in relative 
humidity associated with decreased ice coverage in the Artic 
in coming decades.  Ship traffic is expected to increase but 
support services in case of accidents is a known problem.  
Associated with an increase in relative humidity is a decrease 
in visibility, but the variance in fog and visibility that is 
explained by relative humidity is poorly quantified.  
Quantification of a so-called coefficient of determination may 
benefit from a normalization of shared true variance by the 
total variance in visibility (e.g., as observed in ICOADS obs).


