

Industry use of Marine Environmental Prediction Services

Shawn Allan Shawn.allan@woodplc.com

Environment and Infrastructure Solutions

Environment and Infrastructure Solutions

Wood Metocean Services

Weather and ocean experts mitigating financial and safety risks for clients whose businesses are sensitive to high impact weather events or severe ocean conditions

24/7 anywhere in the world

Over 60 full time meteorologists, oceanographers, climate and data scientists

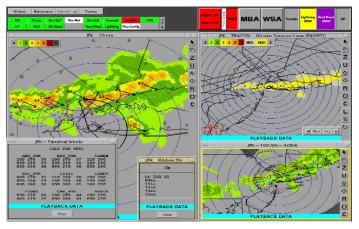
Approx. **2,500** users for our Information Management Tools and Services

Met-Ocean Office Locations St. John's, NL ● Halifax, NS ● Ottawa, ON

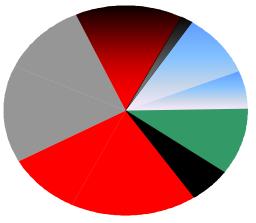
Themes to remember

- Common Operating Picture
- What threshold triggers a change in decision?
- Quantification of uncertainty
- Access to data

Operational use cases in a range of industries

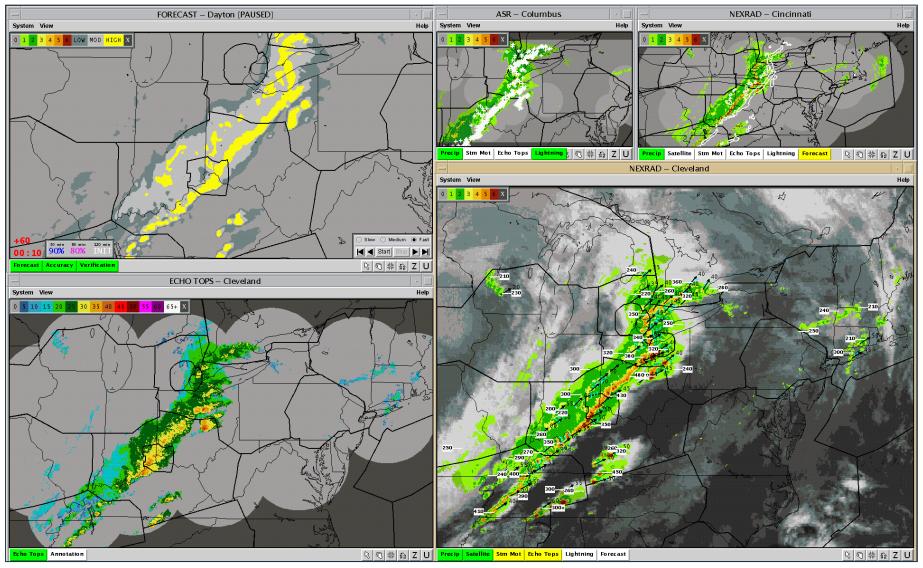

Ports and harbours

- Severe event response/agitation, water depth/clearance forecasting
- Marine sports events (sailing competitions, regattas, etc.)
- Coastal community support
 - Forecasting of flood hazards, impacts on municipal infrastructure
 - Swimmer safety (rip currents forecasting, search and rescue support)
 Nuclear industry
 - Cooling water intake assurance
 - Flood impact forecasting
- Offshore wind farms
 - Forecasting ocean conditions for fatigue analysis and operational planning


Looking Back in Time: A Different Field of View

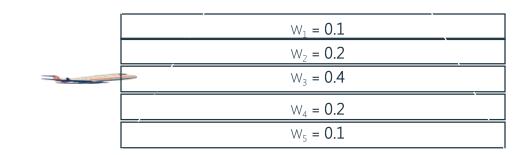
Using Prediction Systems in Aviation Setting

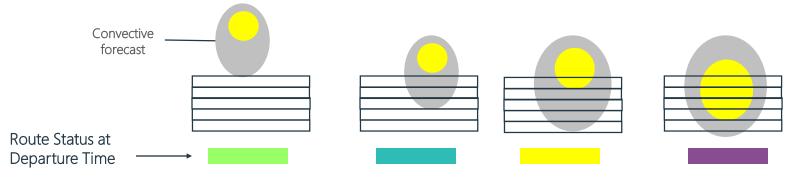
New York Prototype Integrated Terminal Weather System (ITWS)


Relative proportion of weather type to annual arrival delay at EWR

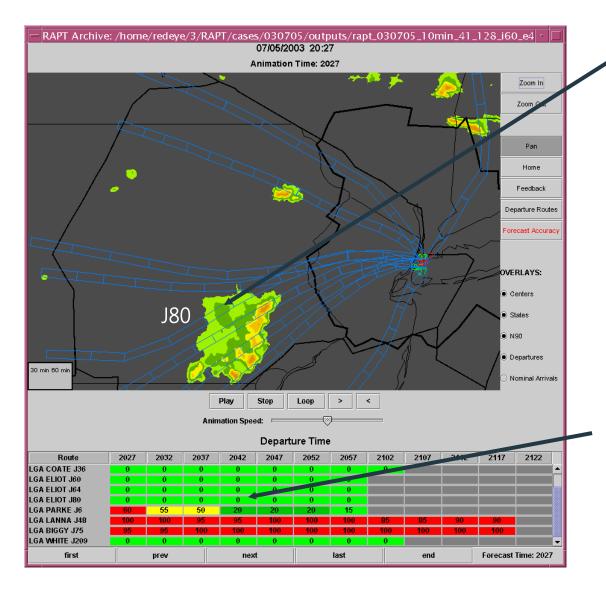
- Lincoln study ATC-291 departures benefit the most from NY ITWS
- NY air traffic controllers operate within most complex airspace in USA
- Relationship drove new areas of research

Growing Up: Corridor Integrated Weather System




Route Availability Planning Tool Algorithm

Departure Route



 W_i = subsegment weights

The RAPT Display

Controllers wanted J80 to remain closed. Managers used RAPT plus storm tops to convince them otherwise.

Managers estimated 30 extra NY departures were able to take off based on this decision.

From Boston/New York to Newfoundland: Aviation to Metocean

That was then...

Marine Site Forecast for ConocoPhillips Sample AMEC Forecast Issued Tuesday April 21, 2009, 15:30 NDT

amec

AMEC Warning (for 10 m height): MSC Warning (N. Grand Banks):

Synopsis

STORM WARNING FOR THURSDAY Moderate southeasterly winds today as a weak low approaches from the south. Winds drop to light early Tuesday in the wake of the low. Winds freshen to moderate to strong northerlies Wednesday as a low approaches from the south. Wind Freshens to storm strength dnesday night as the low passes east of the Bay. Generally good visibility drops to fair to poor Wednesday.

STORM WARNING FOR THURSDAY

2 Day Forecast Starting Tuesday, April 21, 15:30 NDT

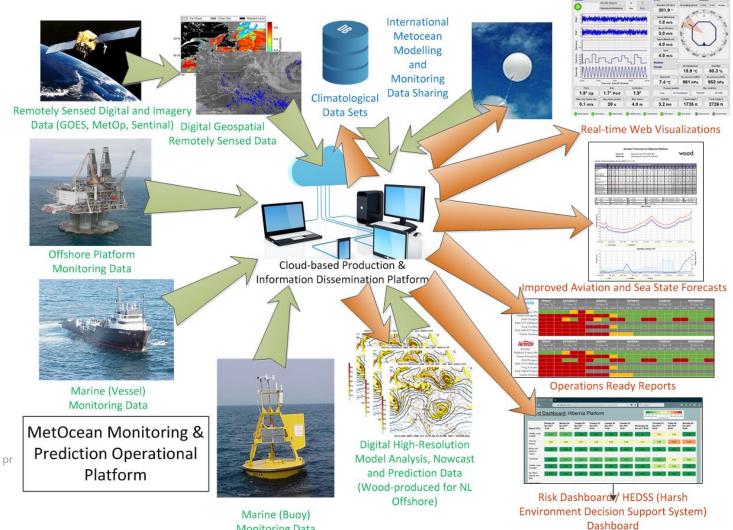
								_	
Date/Time (NDT)	Tue/21 15:30	Tue/21 21:30	Wed/22 03:30	Wed/22 09:30	Wed/22 15:30	Wed/22 21:30	Thu/23 03:30	Thu/23 09:30	Thu/23 15:30
Derrick (82m) Wind Direction (truefrom)	270	260	250	230	210	200	210	210	220
Derrick Wind Speed (kt)	17	19	25	42	48	52	58	60	55
Derrick Maximum Wind Speed (kt)	20	20	30	45	55	57	63	65	60
10m Wind Speed (kt)	12	12	12	35	40	45	47	50	45
10m Maximum Wind Speed (kt)	15	16	17	40	45	50	56	57	52
Wind Wave Height (m)	0.8	0.8	0.8	2	5	4	6	8	9
Wind Wave Period (s)	4	4	4	4	4	5	6	7	7
Primary Swell Direction (true/from)	360	10	10	10	NIL	NIL	NIL	NL	NIL
Primary Swell Height (m)	3.7	3.5	3.2	2	NIL	NIL	0	0	0
Primary Swell Period (s)	11	11	11	11	NIL	NIL	0	0	0
Secondary Swell Direction (true/from)	NIL	NL	NIL						
Secondary Swell Height (m)	0	0	0	0	0	0	0	0	0
Secondary Swell Period (s)	0	0	0	0	0	0	0	0	0
Combined Sea Significant Height (m)	3.8	3.6	3.3	2.8	2.4	2.2	2.3	2.6	2.8
Combined Sea Maximum Height (m)	7.2	6.8	6.3	5.3	4.6	4.3	4.4	4.9	5.3
Weather	CLR	FEW	BKN	OVC	BKN	MIST	R-	R-	R+
Visibility (nm)	6+	6+	6+	6+	6+	3	5/8	3/8	1/8
Temperature (C)	-2.6	-2.3	-1.9	-1.5	-0.5	0.5	1	2	2
Freezing Spray (NIL/LGT/MDT/HVY)	LGT	LGT	LGT	NL	NIL	NIL	NL	NL	NIL
Freezing Spray (cm/h)	0.3	0.3	0.3	0	0	0	0	0	0
Pressure (mb)	1026	1027	1027	1020	1010	996	984	992	996

Vessel Motion, Issued at Tuesday, April 21, 15:30 NDT

Date/Time (NDT)	15:30	21:30	03:30	09:30	15:30	21:30	03:30	09:30	15:30
MODU Heading (true)	290	290	290	290	290	290	290	290	290
Maximum Helideck Heave (m)	3.1	2.8	2.6	2.2	2.2	2.5	3.5	4	5
Maximum Helideck/Rig Floor Pitch (deg)	0.5	0.5	0.5	0.4	1	1	1	1.5	1.5
Maximum Helideck/Rig Floor Roll(deg)	1.4	1.2	1	0.9	1	1	1	1.5	1.5
Maximum Rig Floor Heave (m)	2.3	2	1.9	1.6	2	2.2	2.8	3.5	4

3 Day Outlook Starting Friday, April 24, 03:30 NDT

Date/Time (NDT)	Fri/24 03:30	Fri/24 15:30	Sat/25 03:30	Sat/25 15:30	Sun/26 03:30	Sun/26 15:30
10m Wind Direction (true/from)	163	256	265	263	257	258
10m Wind Speed (kt)	19	35	25	30	25	20
10m Maximum Wind Speed (kt)	30	45	30	35	30	25
Combined Sea Significant Height (m)	2.5	3	3	4	3	2.5
Combined Sea Maximum Height (m)	5	6	6	8	6	5
Visibility (nm)	2	3	1/2	6+	6+	6+

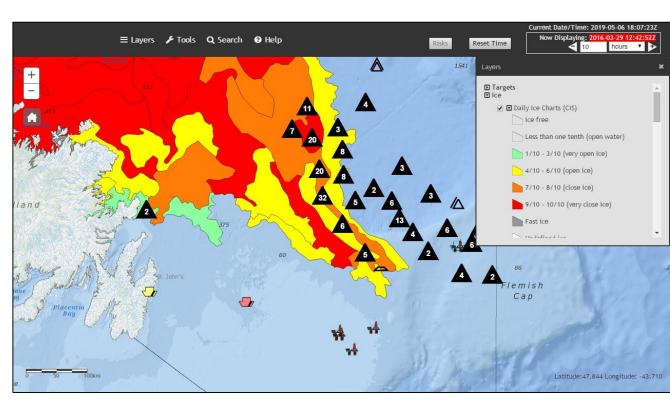

Tuesday April 21, 2009, 21:30 NST Duty Forecaster at 709 739-7775 (Phone); 709-753-2799 (Fax), weather@amec.com (Email) Next Forecast Issue Time: Contact Information:

Beyond tables—Harnessing a world of data

Monitoring Data

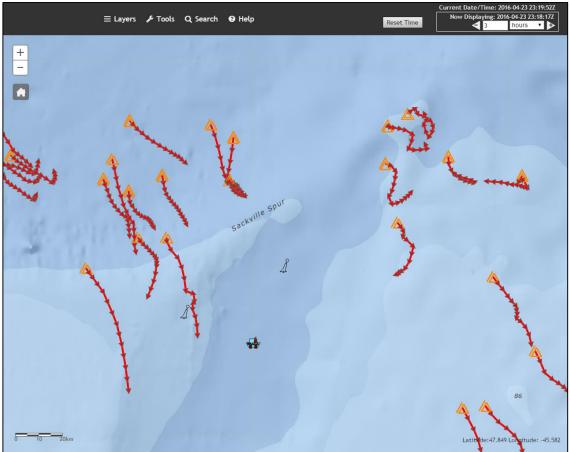
14

This is now...Threshold based risk prediction


<u>Risk Dashboard</u>

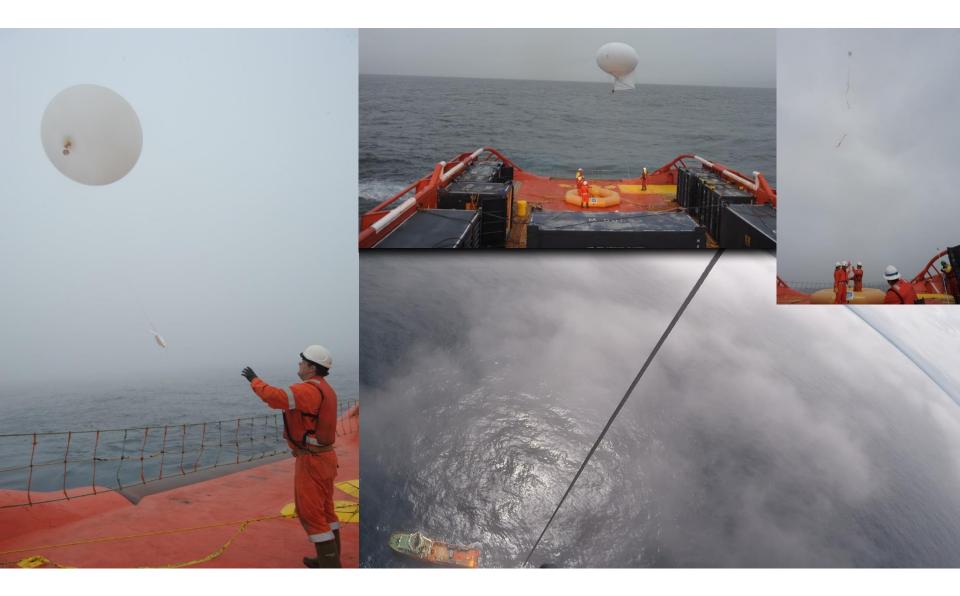
Common Operating Picture for Ice Management Decision Making

Met-Ocean-Ice Data for Operational Decisions


- Met-Ocean-Ice *observation* data is used as inputs to making operational decisions related to:
 - Proximate ice "threats" that require tactical activities to mitigate risk (e.g. iceberg towing)
 - Severe conditions that prevent operational activities (helicopter transport, crane lifts, oceanographic deployments, etc.)

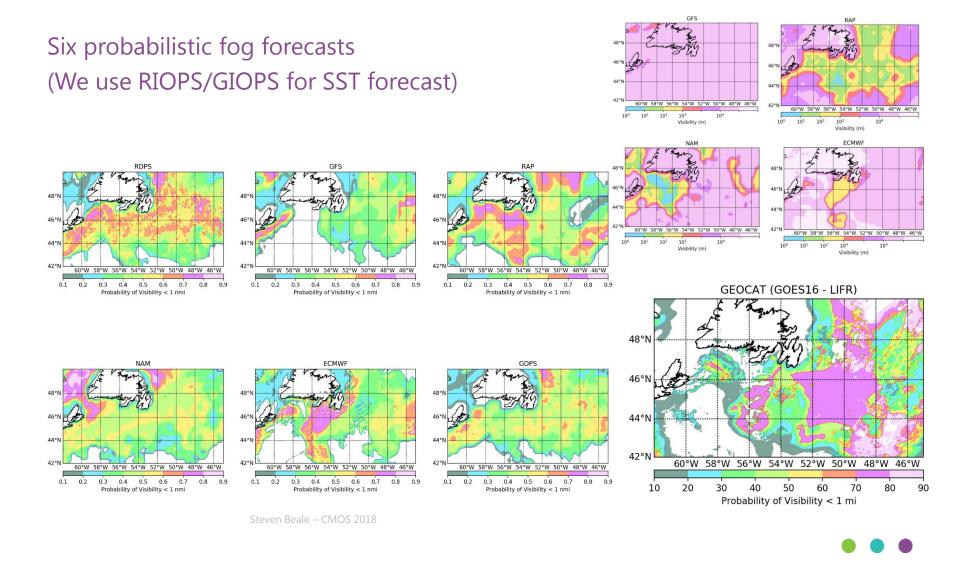
Met-Ocean-Ice Data for Operational Decisions

- Observations (iceberg positions) and model data (current, wave and wind models) are integrated in iceberg drift models to generate predictions of future positions and risk posed by icebergs
- Information is used to identify threats and take actions, e.g.:
 - Tow iceberg
 - Disconnect from well
 - Move platform


Visibility Prediction on the Grand Banks

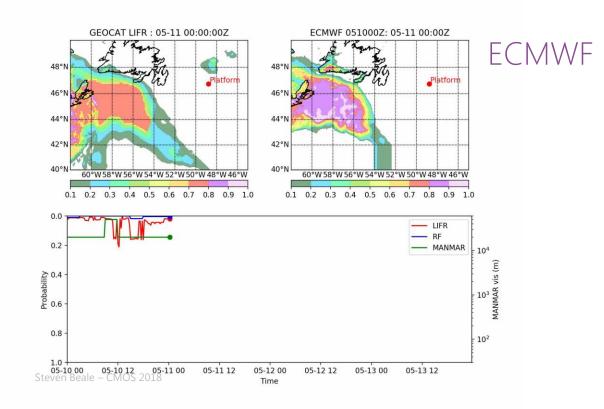
woodplc.com

Collecting data in a harsh environment



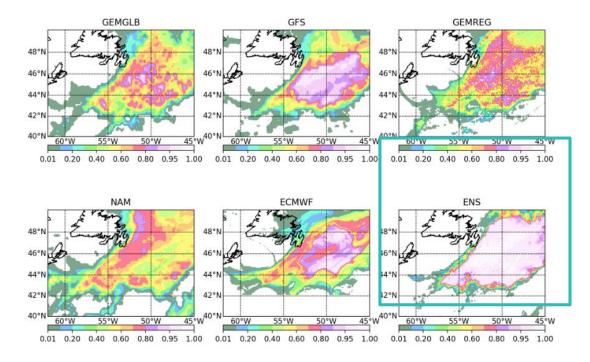
20 A presentation by Wood.

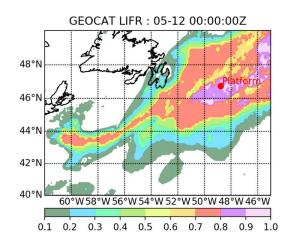
A2presentation by Wood.


Random Forest Method applied to Model Data

A3presentation by Wood.

Case Study


Fog Event May 11 2018; Forecast from May 10 00:00Z



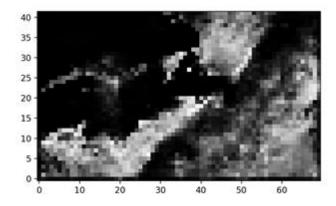
Ensemble techniques for visibility prediction

$$P(S | \overline{E}) = P(\overline{E} | S) \frac{P(S)}{P(\overline{E})}$$
, where $S = State$, \overline{E} is set of forecasts
Bayesian Approach:

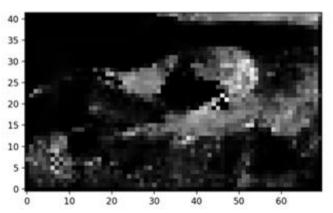
This example: Ensemble is +48hrs probability that GEOCAT probability > 50%

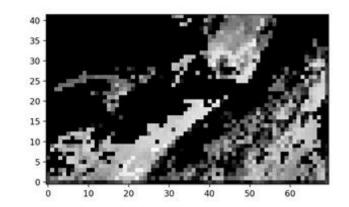
Extracting more value from prediction systems

Categorical Visibility Forecast/Model Validation

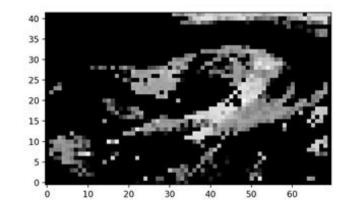

0-6 Hour Rankings	BIAS	POD	FAR	HSS	Rank Score	Rank
FORECAST	1	2	4	1	2.33	1
ECM_BDEA	3	5	5	2	4.17	2
RDPS_BDEA	9	9	2	3	5.67	3
RAP_STWA	4	3	10	5	5.83	4
GFS_BDEA	13	11	1	4	6.83	5
NAM_STWA	11	1	11	9	7.33	6
GFS_WOOD	7	8	7	8	7.50	7
GDPS_BDEA	12	12	3	7	8.17	8
MMB_NATV	6	7	12	6	8.33	9
GFS_STWA	8	10	8	10	9.00	10
NAM_BDEA	10	4	13	12	9.33	11
RAP_NATV	14	6	14	11	10.83	12
RAP_BDEA	2	13	16	15	12.50	13
NAM_NATV	5	14	15	13	12.67	14
GFS_NATV	16	16	6	16	12.67	14
ECM_NATV	15	15	9	14	12.83	16

26 A presentation by Wood. Terry Bullock – 2018

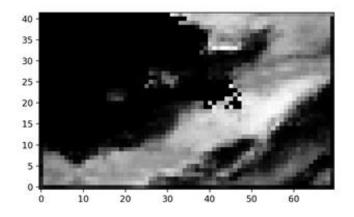

- Study Period 1 June 2018 to 31 August 2018: "Advection Fog Season"
- Fog versus No-fog
- Best POD ~90%, FAR ~10%
- Human skill best at short range
- Native visibility models have poor skill in fog versus no-fog discrimination (are not applicable to Grand Banks)
- Best 7 models have been developed for this project!

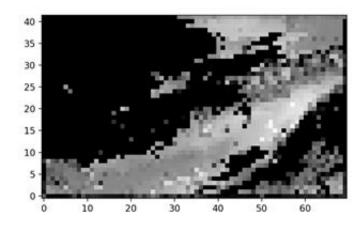


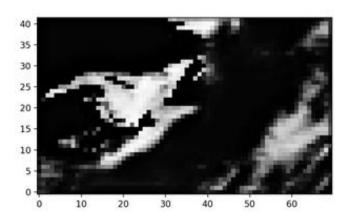
The Future: Deep Learning and other methods

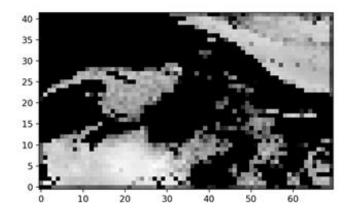


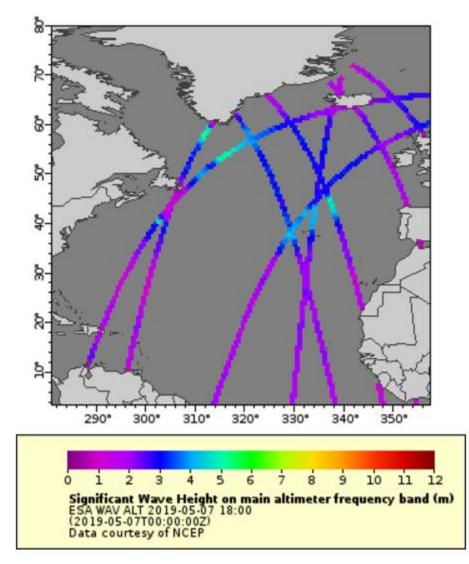
2hrs Predicted


2hrs Observed

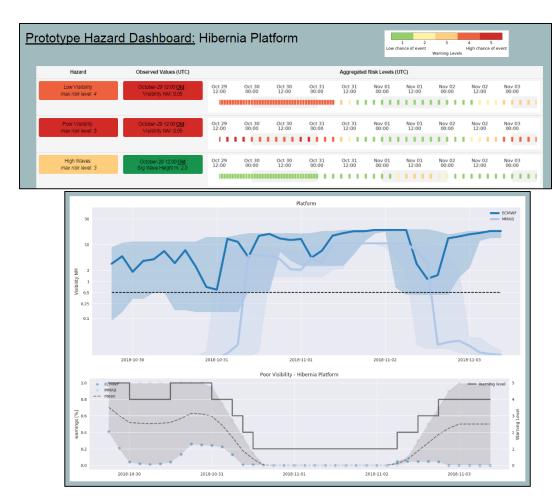


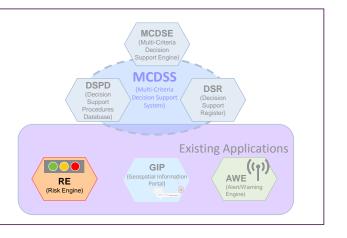

28 A presentation by Wood.


1hr Predicted



Estimated satellite-based wave height measurements



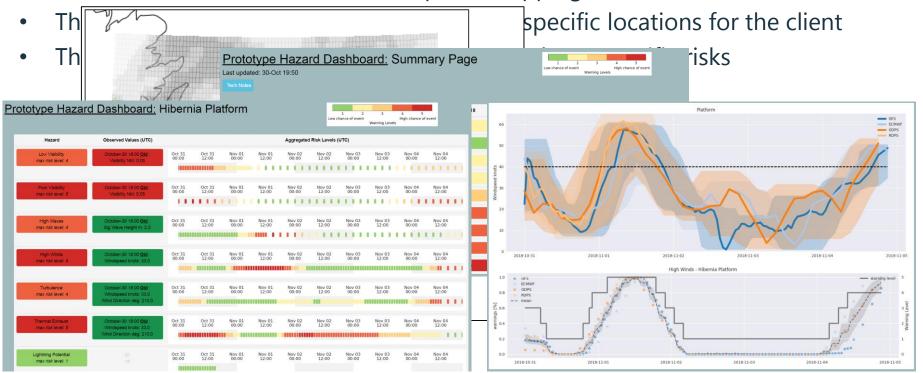


Risk Dashboard R&D

Risk Engine:

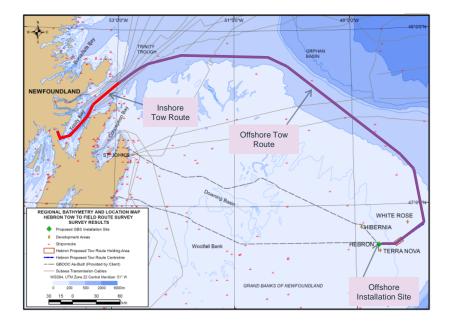
Evaluates environmental inputs and predicts potential for met-ocean conditions (visibility, waves) to exceed operational thresholds

Risk Dashboard R&D


- Risk Dashboard R&D project was self-funded by Wood
- Goal was to create an easy-tointerpret, at-a-glance view for clients to identify their risk
- Risk system is comprised of:
 - Risk Engine: sophisticated statistical analysis and algorithms to predict "probability" of exceeding thresholds
 - Risk Dashboard: Web-based display that communicates an at-a-glance view of potential risks

Prototype		<u>shboard:</u> Sum	mary Page	u	i ż ś 4 w chance of event Hi Warning Levels	S gh chance of event
Location	Tuesday 30-Oct-2018	Wednesday 31-Oct-2018	Thursday 01-Nov-2018	Friday 02-Nov-2018	Saturday 03-Nov-2018	Sunday 04-Nov-2018
Gander Airport	Ceiling Height	Ceiling Height			Ceiling Height	Ceiling Height
St. John's Airport	Multiple Events	Multiple Events			Ceiling Height	Ceiling Height
Waypoint 1						
Waypoint 2						
Waypoint 3			High Waves			
Waypoint 4			High Waves			
Waypoint 5			High Waves	High Waves		
Waypoint 6			High Waves	High Waves		
Hibernia Platform	Multiple Events	Multiple Events	Multiple Events	Multiple Events	Multiple Events	Multiple Events

Risk Dashboard R&D


• The risk determination starts with spatial mapping of the risk

Case Study on Practical Use of Environmental Prediction Systems for Industry Decisions

Marine Operations – Metocean Requirements

Platform Tow & Installation

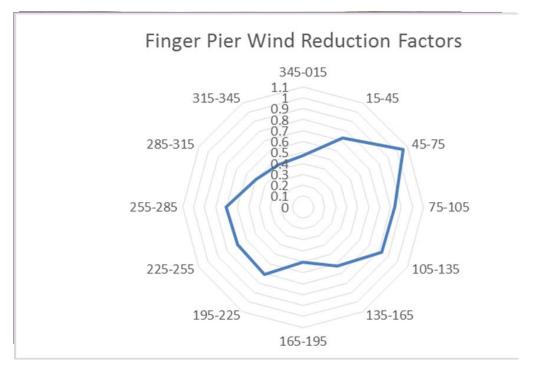
Paper # OTC-29422-MS • Metocean Decision Making Lessons Learned • Bullock, Beale, McCarthy & Kelly

Marine Operations – Metocean Requirements

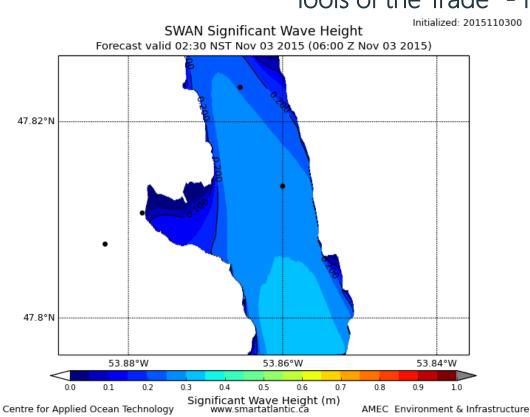
Constraints & Criteria

- Critical Path Schedule
- Weather Restricted
- Design 'Alpha' Factors
- Limited Weather Window

Solutions & Measures


- Experienced Marine Management Team
- Forecaster(s) w/ local expertise & experience
- Forecaster(s) embedded w/ on-site teams
- Qualitative Improvement

- Confidence for "go / no-go" decision
- Capitalize on Weather Windows
- Minimize waiting on weather


Paper # OTC-29422-MS • Metocean Decision Making Lessons Learned • Bullock, Beale, McCarthy & Kelly

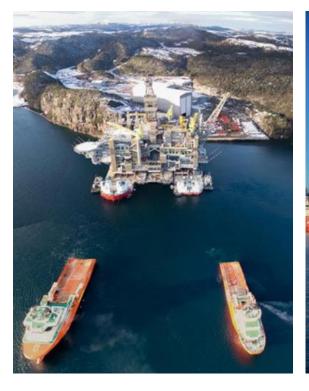
"Tools of the Trade" - Climatology

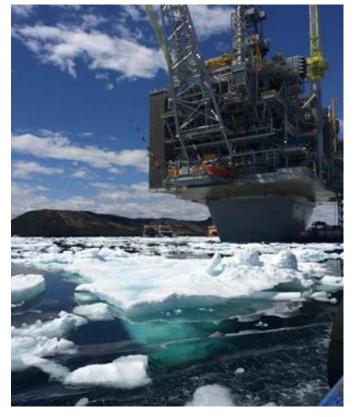
- Climatology:
 - ✓ Winds
 - Sea state
 - ✓ Air/sea temperatures
- Observations versus model predictions:
 - ✓ Ambient versus meso/micro model predictions
 - \checkmark Mean winds versus gusts
 - ✓ Turning angles and gust factors

Paper # OTC-29422-MS • Metocean Decision Making Lessons Learned • Bullock, Beale, McCarthy & Kelly

"Tools of the Trade" - Modelling

- Meso WRF Model:
 - ✓ Winds
 - ✓ Air/sea temperatures
- Micro LES Model
- SWAN Sea state model:
 - ✓ Coastal / Shallow Water
 - ✓ Hsig/Tp
- Site-specific fetch-limited sea state model best for extreme events


Living Quarters Load Out, Sea Transport and Installation

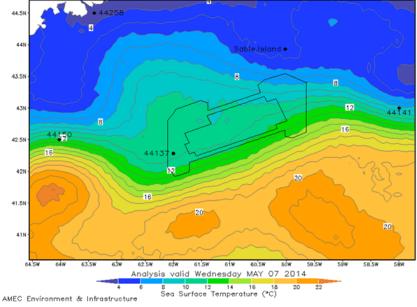

- Most environmentally sensitive marine operation of project
- 72 hour weather window
- Wind limiting factor as low as 9 m/s (17 knots)
- Forecast procedures
 developed over the two
 and ½ year period prior
 to operation execution

Paper # OTC-29422-MS • Metocean Decision Making Lessons Learned • Bullock, Beale, McCarthy & Kelly

Topsides Lift-off, Transport, Float-over and GBS Mating

Tow to Field & Installation

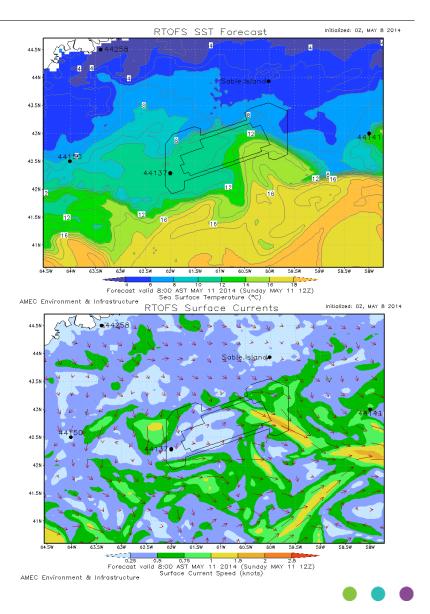
Historically late / thick sea ice
Weather restricted operations:
Transit of Trinity Bay (winds)
Installation (winds, visibility and seas)


Paper # OTC-29422-MS • Metocean Decision Making Lessons Learned • Bullock, Beale, McCarthy & Kelly

Prediction of thermocline depth

- Daily oceanographic analysis and forecast of sea surface temperatures and expected variability of thermal structure.
- Predictions based on potential contribution of upcoming weather events toward surface layer mixing or stratification.

Oceanographic Analysis: Tangier Seismic Survey Area – May 5, 2014


- 1. Temperature and salinity profiles from May 3 indicate a top mixed layer with a depth of 12 m and temperature around 11 °C. This top layer is slightly stratified, with the temperature in the top 5 m being approximately 0.5 °C warmer than at 12 m. Below the mixed layer the profiles show strong stratification in temperature and salinity down to a depth of 30 m. Overall the profiles indicate a shift in the temperature profile of approximately 3 to 4 °C, and approximately 1 ppt in salinity in the top 30 m.
- 2. Maps of SST continue to indicate a relatively uniform distribution of temperatures near 11 °C throughout most of the survey area. The forecasts suggest that surface temperatures would remain relatively stable in the next day over most of the survey area, with no significant water mass change expected. The surface warming trend is likely to be temporarily countered by enhanced mixing of the shallow surface layer on Saturday night and Sunday.
- 3. Winds and seas are expected to be light to moderate with mainly clear skies through Friday. These conditions are expected to promote near-surface warming which is likely to enhance the near-surface stratification. Saturday night into Sunday, strong winds and moderate to rough seas are expected to develop along with fog and mist, leading to a mixing of the shallow warm surface layer.

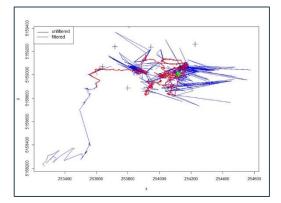
Sea Surface Analysis

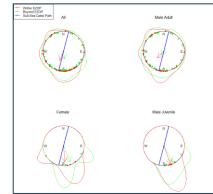
Thermocline depth

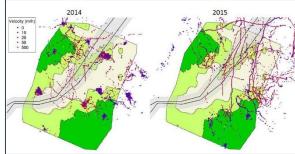
- Assessment based on analysis and interpretation of observations and forecasts:
 - Profiles of temperature and salinity from CTD casts
 - High resolution SST Analysis from NOAA based on real-time, global SST observations from satellite, ships and buoys
 - Wood's weather forecast
 - NOAA's Real-Time Ocean Forecast System (RTOFS) forecasts of surface currents, temperature and salinity structure
 - HYCOM Consortium forecasts of currents, temperature and salinity structure
 - Anticipated improvements with new developments: RIOPS and related models

Marine Environment EEM and Research

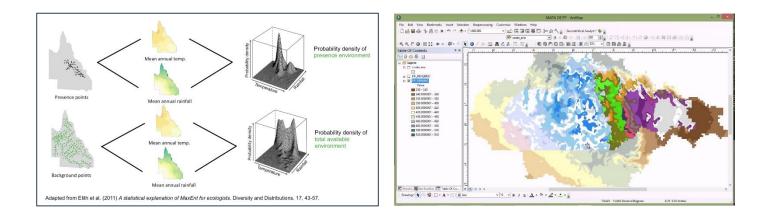

Marine EEM and Research


- Environmental DNA (eDNA):
 - New field of research and monitoring
 - Reduces sampling effort (water sample analysis)
 - Especially valuable for rare or hard to sample organisms
 - Invasive Species (vessel inspections)
 - SARA listed Species (Atlantic salmon)
 - Collaboration with CEGA
 - Nunavut / Nalcor
 - DFO
 - PRNL

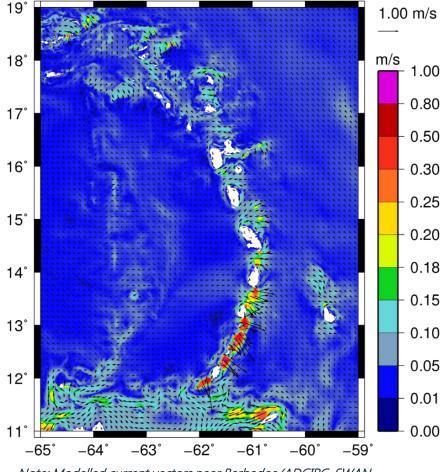



Marine EEM and Research

- Hydro Acoustics:
 - Expanding Capabilities / Distribution
 - Many taggers but not many listeners
 - All tags can be heard
 - Collaboration with DFO, OTN, ASF



Marine EEM and Research


- Habitat Probability Modelling:
 - Deep Water Corals
 - Can be modified to model any species distribution probability
 - Will Enable more informed assessments and permitting
 - Existing NSERC Industry Grant with MUN
 - Dr. Julissa Roncal

Industry Trends in Services and Datasets

- Trend toward open source development of scientific models and software
- Increased access to global and regional datasets and vast computing power
 - benefits industries with a stake in the oceans
- Lowered barriers for industry participation and collaboration
 - Feasible for private consultants to develop local high-resolution flood hazard/impact forecasting systems, leveraging global/regional efforts by academia government agencies
- Availability of in-situ oceanographic datasets and atmospheric inputs still a key challenge
- Example: Wood's (Dr. Juan Gonzalez-Lopez) ongoing engagement with CARICOOS (Puerto Rico) to develop a regional operational modelling system for

48 the Caribbeamood. OceanPredict'1

Note: Modelled current vectors near Barbados (ADCIRC-SWAN model, by Gonzalez-Lopez et al.)

Contact: shawn.allan@woodplc.com

woodplc.com