Development of a coupled coastal circulation and inland hydrology modeling framework based on ESMF/NUOPC infrastructure

Saeed Moghimi¹, Edward Myers¹, Sergey Vinogradov¹, Andre Van der Westhuysen², Ali Abdolali², Fei Liu³, Lei Shi¹, Yuji Funakoshi¹, Jaime Calzada¹ Lianyuan Zheng¹, Aijun Zhang¹, Cristina Urizar¹, Carolyn Lindley¹, Zaizhong Ma², Roham Bakhtyar², Panagiotis Velissariou², Kazungu Maitaria², Beheen Trimble², Hassan Mashriqui², Trey Flowers², Patrick Burke¹, Cecelia DeLuca³, Arun Chawla², Avichal Mehra², Derrick Snowden¹, Nicole Kurkowski², Julia Powell¹, Neeraj Saraf¹.

¹ NOAA/NOS (National Ocean Service)
² NOAA/NWS (NWS: National Weather Service)
³ ESMF/NUOPC Development Team

NOAA: National Oceanic and Atmospheric Administration
ESMF: Earth System Modeling Framework
NUOPC: National Unified Operational Prediction Capability
NOAA Environmental Modeling System (NEMS)

<table>
<thead>
<tr>
<th>Category</th>
<th>Example Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>FV3, GSM, NMNMb</td>
</tr>
<tr>
<td>OCN</td>
<td>MOM5, MOM6, ADCRIC, ROMS, FVCOM</td>
</tr>
<tr>
<td>WAV</td>
<td>WWIII</td>
</tr>
<tr>
<td>ICE</td>
<td>CICE, KISS</td>
</tr>
<tr>
<td>HYD</td>
<td>WRF-Hydro, NWM</td>
</tr>
<tr>
<td>LND</td>
<td>LIS</td>
</tr>
<tr>
<td>AER</td>
<td>GOCART</td>
</tr>
<tr>
<td>IPM</td>
<td>IPE</td>
</tr>
</tbody>
</table>

Validating: Examples
In development: Examples
Plan to develop: Examples

Note: Preliminary Results
NEMS (NUOPC/ESMF) Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>ATM</th>
<th>OCN</th>
<th>WAV</th>
<th>ICE</th>
<th>HYD</th>
<th>LND</th>
<th>AER</th>
<th>IPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMAQ Air Quality</td>
<td>NMMB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM2.5</td>
</tr>
<tr>
<td>CoastalAct</td>
<td></td>
<td>ADCIRC</td>
<td>WWIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYCOM-GSM-CICE</td>
<td>GSM</td>
<td>HYCOM</td>
<td></td>
<td></td>
<td>CICE</td>
<td></td>
<td></td>
<td>NWM</td>
</tr>
<tr>
<td>Regional Hydro</td>
<td>GSM</td>
<td>MOM5</td>
<td></td>
<td></td>
<td>CICE</td>
<td></td>
<td></td>
<td>WRF-Hydro</td>
</tr>
<tr>
<td>Regional Nest</td>
<td>NMMB</td>
<td>HYCOM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UGCS-Seasonal</td>
<td>GSM</td>
<td>MOM5</td>
<td></td>
<td></td>
<td>CICE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UGCS-Weather</td>
<td>GSM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IPE</td>
</tr>
<tr>
<td>WAM-IPE</td>
<td>GSM</td>
<td></td>
<td></td>
<td></td>
<td>WWIII</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave</td>
<td>GSM</td>
<td></td>
<td>ROMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NWM</td>
</tr>
<tr>
<td>TWL-ROMS</td>
<td></td>
<td>ROMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NWM</td>
</tr>
<tr>
<td>TWL-FVCOM</td>
<td></td>
<td>FVCOM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NWM</td>
</tr>
</tbody>
</table>

Note: Preliminary Results

Contact: Saeed.Moghimi@noaa.gov
Unified NOAA Modeling Strategy for Integrated Water Model Coupling

- Hurricane Weather Modeling
 - Operational models
 - NHC Official Forecasts
 - Ensembles

- Coastal Ocean Modeling
 - Wind, Pressure
 - Wave Stress
 - Water Level, Currents

- Nearshore Wave Model
 - Wave Spectra

- Hydrologic Modeling
 - Precipitation
 - Inflow
 - Water Level

- Basin-scale Wave Model
 - Wave Spectra

Products

Example Products
- Maps and Visualizations
- Ensembles, Probabilities
- Product Uncertainties
- Wave Conditions

Contact: Saeed.Moghimi@noaa.gov
National Unified Operational Prediction Capability (NUOPC) Layer

NSEModel Application

- Model components
 - HWRF
 - ADCIRC
 - WW3
 - NWM

NUOPC components

- Driver
- Model
- Connector

Contact: Saeed.Moghimi@noaa.gov
Sandy landfall area

Wave height

Wind speed

Surge

Max Surge

WWIII

HWRF

ADCIRC

SAN ATM WAV2OCN
hs Date: 2012-10-27T00:00:00
Max. Val. = 14.24

SAN ATM WAV2OCN
wind Date: 2012-10-27T00:00:00
Max. Val. = 37.86

SAN Try01+WAV - Only tide
Date: 2012-10-27T00:00:00
Max. Val. = 0.27

SAN ATM WAV2OCN - Only tide

Note: Preliminary Results

Contact: Saeed.Moghimi@noaa.gov
Coupling of NWM and Coastal Models
Case study: Delaware Bay

Calibrated basins:
- NWMv1.1: 48 (from USGS GAGES-II)
- NWMv1.2: 1,164 (from USGS GAGESII + CADWR)

ADCIRC Domain
Exported and imported variables

NWM to Coastal models

<table>
<thead>
<tr>
<th>Data Field</th>
<th>Exported</th>
<th>Imported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge</td>
<td>NWM</td>
<td>Coastal models</td>
</tr>
<tr>
<td>Lateral fluxes</td>
<td>NWM</td>
<td>Coastal models</td>
</tr>
</tbody>
</table>

Coastal models to NWM

<table>
<thead>
<tr>
<th>Data Field</th>
<th>Exported</th>
<th>Imported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea surface elevation</td>
<td>Coastal models</td>
<td>NWM</td>
</tr>
<tr>
<td>Eastward sea water velocity</td>
<td>Coastal models</td>
<td>NWM</td>
</tr>
<tr>
<td>Northward sea water velocity</td>
<td>Coastal models</td>
<td>NWM</td>
</tr>
</tbody>
</table>
On-going and planned projects

COASTAL Act

NOAA Water Initiative
- University of Oklahoma: “Steps Towards Automating River Connections and Addressing Precipitation in ADCIRC”
- Notre Dame University: “Grid Development and Automated Grid Generation for River Connections”
- Virginia Institute of Marine Sciences: “Implementing SCHISM model to Improve Integrated Water Modeling Projects”

Hurricane Harvey supplemental projects
- NWC/CSDL/EMC: Develop and Demonstrate Dynamic Coastal Coupling between the National Water Model and NOS Extratropical Surge and Tide Operational Forecast System
- CSDL/EMC/STI: Develop and Demonstrate Dynamic Coastal Coupling between the National Water Model and NOS Extratropical Surge and Tide Operational Forecast System

Contact: Saeed.Moghimi@noaa.gov
On-going projects

IOOS Coastal Ocean Modeling Testbed (COMT)
- University of North Carolina: “Coupling the National Water Model to the Coastal Ocean for Predicting Water Hazards”
- University of Massachusetts-Dartmouth: “Coupling the Northeast Coastal Ocean Forecast System (NECOFS) to NWM and the Water Balance Model”
- North Carolina State University: “Multi-Level River-Ocean Coupling using the Coupled Northwest Atlantic Prediction System”

Joint Technology Transfer Initiative (JTTI)
- Notre Dame University: “Advancing ADCIRC U.S. Atlantic and Gulf Coast Grids and Capabilities to Facilitate Coupling to the National Water Model in ESTOFS Operational Forecasting”
- NOAA Great Lakes Environmental Research Laboratory: “Improving Water Cycle Prediction in the WRF-Hydro National Water Model Through Regional Customization of Calibration, Data Assimilation, and Coastal Coupling Schemes”

Contact: Saeed.Moghimi@noaa.gov
Future work

- Continue development efforts for coupling National Water Model and coastal ocean models for Storm Surge and 3D coastal ocean models’
- Expanding unified modeling frameworks capabilities for Storm Surge and 3D ocean models (NUOPC/NEMS)
- Developing capabilities to support water quality and ecosystem modeling in estuaries and coastal oceans (in connection with inland processes)
- Inclusion of ice to the inland-coastal coupled system to support safe navigation and integrated water overall goals in Alaska region
Thanks for your attention
Sandy: High Water Marks
NWM/hydrology module results

NWM Channel Structure

NWM streamflow output indexed by feature_id. Does not contain river geometry.

Runoff Input
Streamflow Output

Cosgrove et al, 2018
Locations for handing-off NWM data to ADCIRC (for testing)

Discharges from NWM

Lateral fluxes from NWM
Towards NOAA Unified Modeling Strategy

The long-term approach regarding NOS coastal modeling capability is to move towards implementing full 3D coastal modeling linked to the inland hydrology models, on a national scale.

We have identified that direct coupling of the coastal circulation model to the inland hydrology model is the suggested long-term approach for NOS national scale coastal circulation models.

Boundary conditions from NOS operational models are always available to NOAA partners to support their inland flood modeling efforts.
Unified NOAA Modeling Strategy for Integrated Water Model Coupling

Hurricane Weather Modeling
- Operational models
- NHC Official Forecasts
- Ensembles

Operational models

NHC Official Forecasts

Ensembles

Hydrologic Modeling
- Precipitation

Coastal Ocean Modeling
- Wind Stress
- Water Level, Currents
- Inflow

Nearshore Wave Model
- Wave spectra

Basin-scale Wave Model
- Wave spectra

Products
- Water Level, Currents
- River Level

Example Products
- Maps and Visualizations
- Ensembles, Probabilities
- Product Uncertainties
- Wave Conditions